CQT Talk by Marko Lončar, Harvard University
Title: Quantum Optical Interconnects
Date/Time: 11-Dec, 03:00PM
Venue: CQT Level 3 Seminar Room, S15-03-15
Abstract: As quantum information technology matures and becomes more complex, so do the needs for interconnecting disparate quantum subsystems (computers, networks, sensors) into larger quantum networks. Thus, developing reliable quantum interconnects (QuICs) – from chip- to continental-scale, is emerging as one of the central goals for quantum information science and technology. I will describe our activities aimed at realization of two important QuICS: quantum repeaters (QR) and quantum transducers (QT). Our QRs rely on silicon-vacancy (SiV) color center in diamond, a leading quantum memory platform, essential for realization of long-distance quantum networks [1]. In addition to their excellent spin and optical properties, SiVs feature large strain susceptibility [2] which has resulted in emergence of the field of quantum phononics. Here, phonons could be used to control SiVs [3-5] as well as to realize chip-scale QuICs. I will also discuss our work on thin film lithium niobate (TFLN) photonic platform [6] that can be used to control spectral [7] and temporal [8] properties of photons emitted by SiVs. Finally, QTs based on TFLN [9, 10] will also be presented. These devices can enable realization of networks of quantum computers, connected with low loss and low noise optical communication channels.
1. M.Bhaskar, et al, “Experimental demonstration of memory-enhanced quantum communication” Nature, 580, 60 (2020);
2. Y. I. Sohn*, Srujan S. Meesala*, B. Pingault*, H. A. Atikian, J. Holzgrafe, M. Gündoğan, C. Stavrakas, M. J. Stanley, A. Sipahigil, J. Choi, M. Zhang, J. L. Pacheco, J. Abraham, E. Bielejec, M. D. Lukin, M. Atatüre, and M. Lončar. “Controlling the coherence of a diamond spin qubit through its strain environment.” Nature Communications 9, 2012 (2018)
3. S. Maity, L. Shao, S. Bogdanović, S. Meesala, Y. I. Sohn, N. Sinclair, B. Pingault, M. Chalupnik, C. Chia, L. Zheng, K. Lai, and M. Lončar, “Coherent Acoustic Control of a Single Silicon Vacancy Spin in Diamond.” Nature Communications, 11, 1, Pp. 193 (2020)
4. G. D. Joe, C. Chia, B. Pingault, M. Haas, M. Chalupnik, E. Cornell, K. Kuruma, B. Machielse, N. Sinclair, S. Meesala, and M. Lončar. “High Q-factor diamond optomechanical resonators with silicon vacancy centers at millikelvin temperatures.” https://arxiv.org/abs/2310.18838 (2023)
5. K. Kuruma, B. Pingault, C. Chia, M. Haas, G. D. Joe, D. R. Assumpcao, S. W. Ding, C. Jin, C. J. Xin, M. Yeh, N. Sinclair, and M. Lončar, “Engineering Phonon-Qubit Interactions using Phononic Crystals.” https://arxiv.org/abs/2310.06236v1 (2023)
6. D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, and M. Lončar. “Integrated photonics on thin-film lithium niobate.” Advances in Optics and Photonics, 13, 242 (2021)
7. D. Zhu, C. Chen, M. J. Yu, L. Shao, Y. Hu, C. J. Xin, M. Yeh, S. Ghosh, L. He, C. Reimer, N. Sinclair, F. N. C. Wong, M. Zhang, and M. Loncar. “Spectral control of nonclassical light using an integrated thin-film lithium niobate modulator.” Nature, Light: science and applications, 11, 327 (2022)
8. D. Renaud, D. R. Assumpcao, G. Joe, A. Shams-Ansari, D. Zhu, Y. Hu, N. Sinclair, and M. Lončar, “Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators”, Nature Communications, 14, 1496 (2023)
9. H. K. Warner, J. Holzgrafe, B. Yankelevich, D. Barton, S. Poletto, C. J. Xin, N. Sinclair, D. Zhu, E. Sete, B. Langley, E. Batson, M. Colangelo, A. Shams-Ansari, G. Joe, K. K. Berggren, L. Jiang, M. Reagor, and M. Loncar. “Coherent control of a superconducting qubit using light.” https://arxiv.org/abs/2310.16155 (2023)
10. J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar. “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction.” Optica 7, 1714 (2020)